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We consider Potts Hopfield networks of size N. We prove the result: 3c~, > 0 
such that for all 0 < ~ < c% we can find 6, e > 0 in such a way that, when N ~ ~,  
we can store aN patterns, all of them being sorrounded by e-energy barriers at 
distance 6. 
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I N T R O D U C T I O N  

Pot ts -Hopf ie ld  networks correspond to q-state neural  networks. They have 

been recently used to model  some smoothing  techniques and  coloring rules 

(see, for instance, ref. 6). We consider the problem of the memory  capacity. 
We remark that  we are storring colored pat terns with q colors instead of 

black and white pat terns as would be the case in the Hopfield model. 
In  our  ma in  theorem we consider the relat ion between local min ima  of 

the energy funct ion and  the stored patterns.  We prove an analog of the 

result shown by N e w m a n  for the Hopfield m o d e l  (a) To describe it, let us 
consider a network of q-state neurons,  of size N. We prove that  there exists 

c~ > 0 such that for any 0 < c~ < ~ we can find e > 0 and 0 < 6 < 1/2 such 

that, in the limit N ~  0% we can store a N  patterns,  all of them being 
sor rounded  by e-energy barriers at distance c5. 
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Our proof follows that of Newman. But some interesting technical 
points must be solved. 

In Section 1 we describe the model and we show that it reduces to the 
Hopfield networks when q = 2. We also code the Hamiltonian as well as 
the dynamics with a 2-state neural network and at the end of this section 
we state the main result. The proofs are in Section 2. 

A complete discussion of Potts model can be found in ref. 7. 

1. DESCRIPTION OF THE M O D E L  A N D  M A I N  RESULT 

The model has N neurons whose configurations are described by an 
N-vector a = (o-j . . . . .  a N )  , where for any i t  {1 ..... N}, O-i~ {0, 1 ..... q - 1 } = Q, 
and q is a positive integer ~> 2. 

p m to be stored, each of which is an There are m e N patterns ( 3 ) , =  1 
N-vector ~ u = ( ~  ..... ~v), where V#~ {1 ..... m}, VIE{1 ..... N}, ~ Q .  We 
consider the random case, which corresponds to choosing ( i )  i.i.d, with 
P ( ~  = s) = 1/q Vs ~ Q. 

Given the patterns ~ ,  we define the energy 

H(O-) = - 6(~;, O-i), for O-e 
~u=l i=1  

where 3 ( . , . )  is the Kronecker symbol. 
Let us associate a possible sequential dynamics compatible with the 

Hamiltonian. Assume we have updated the ith neuron of the configuration 
O- = (O" 1 , . . . ,  O 'N)  and call ~r' = (a'l,..., a})  the new configuration. So 

a}=o-j for any j r  

It can be easily shown that 

H ( c r ' ) -  H(a)  = - 2  6(~f, o-;) 6 ( ~ ,  a j ) -  + 2 -  
u = l  j 1 

j ~ i  

N 

p = l  
j r  

Now define O-'~ = s, where s is any one of the elements s' of Q, which is a 
maximizer in the following formula: 

max 6(~f, s') 6(~f, a j ) -  + z -  (1.2) 
s ' s Q  p = l  1 

j r  
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Hence H is a Lyapunov function of this dynamics, that is, it decreases 
with the evolution. In' particular, starting with some initial configuration 
a(0), the trajectory will follow the decreasing part of the graph of the 
function o- --, H(a),  and will eventually reach a local minimum, where it will 
stop. 

To analyze the expressions (1.1) and (1.2) in the case q = 2, transform 
the {0,1} variables o- i, ~ into the { - 1 , 1 }  variables 5 , = 2 a i - t ,  
~'~ = 2 ~ -  1. It is easily shown that H(a)  given by (1.1) becomes 

1 ~ N U 

, u - - i  i = 1  j = l  

which is the usual Lyapunov functional. (1) Now the dynamics (1.2) is 
written into the new variables as 

5i = sign aj 
i 1 j = l  

which is the sequential dynamics of the Hopfield model. (I) 
Furthermore, the general Potts-Hopfield model given by Hamiltonian 

(1.1) can be coded like a Hopfield network of size qN, the states of each 
neuron being {0, 1}. In this purpose, associate to ~" and cr the following 
qN-vectors: 

Hence the Hamiltonian (1.1) becomes 

N q N q 

H ( 6 ) = -  Z Z 2 2 2~ fu ~. 8. z t ,  s ' V j ,  u t , s  j , u  

, u = l  i = 1  s = l  j = l  u = l  

q 

+ 2 N  Z Z (~.sd,,, -mN2 
p = l  i = 1  s - - 1  

This corresponds to a Hamiltonian associated to the following sequential 
dynamics, (6) which we write for the updating of the (i, s) neuron: 

(O,s) = ~ ~.~ " ' ~+,,, o-j , .  - N r  , i, S 
t j = l  u = l  

where ~(v) is the threshold function, ~(v)= 1 if v~>0, = 0  if v<0 .  This is 
similar to the iteration of a {0, 1 } Hopfield network with thresholds N ~ .  
The difference from the Hopfield model is that the set of variables 
f ~,u . t~,s.  P =  1,..., m; i =  1,..., N; s =  1 ..... q} are not independent; in fact, the 
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q ~t = 1 must be verified for each pair (i, #). Then the relations ~s  = ~ ,,s 
statistical properties of the Potts-Hopfield model are not simple extensions 
of the Hopfield case. 

We want to study the relation between the local minima of the energy 
H(a)  and the stored patterns {3": # =  1,..., m} choosen at random with 
uniform distribution. 

In the Hopfield case (q = 2), if m = N/(c log N) for some real number 
c, it is proved that the original patterns are local minima. (4'5) The 
case m = aN was studied by Amit et al. (3) using a nonrigorous argument 
that strongly suggests the presence of a threshold a~. such that if 
0 < ~ < ~ c ( ~ c ~ 0 . 1 5 ) ,  the Hamiltonian has minima that are near the 
patterns, while if e > ec, this is not the case. 

An important rigorous result in this direction was made by 
Newman, (2) who proved that 3e > 0 such that if ~ < e, then for almost all 
realizations of random patterns there exists, around each pattern, an 
energy barrier. Let us be more precise. 

Call d(o, a ')  the Hamming distance between two configurations: 

N 

d(a, a ' ) - -  ~ [1 - f ( o ~ ,  o'~)] (1.3) 
i - - I  

that is, the number of sites where the two configurations disagree. For  any 
configuration o and real number f e [0, 1], denote by 

S(o, 3) = {0': d(a, 0') = [fiN] } 

the sphere of radius [6N].  
Call h(a, 6 ) =  min{H(a ') :  a ' s  S(o, 6)}. We shall say that there exists 

an energy barrier at distance f around a pattern ~" if for some e > 0 

H(~. ~') + eN 2 < _h(~ ", fi) (1.4) 

We remark that the presence of an energy barrier at distance 6 around 
~" does not imply that ~u is a local minimum, but merely that at least one 
minimum is inside a ball of radius [6N] centered at ~". If we accept the 
idea of storing patterns that could be retrievied with error s, the notion of 
energy barriers is a good one. 

The main result of this paper is the extension to q-state neural 
networks of the Newman result for q-= 2. 

T h e o r e m .  Given q~> 2, there exists an _~c = a t ( q ) > 0  such that for 
any ~<_~c, we can find 6 e  (0, 1/2) and an e > 0  such that, in the limit 
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N - ,  c~, for almost all configurations of patterns, 
rounded by energy barriers at distance 6. 

Precisely, 

all patterns are sur- 

1 N>~K 

\ 
{Vff �9 { 1,..., c~N}; re- �9 S(~ ~, 3); H(a) > H(~ ~) + eN2}) = 1 

(1.5) 

2. P R O O F  OF T H E  T H E O R E M  

Let us first remark that, g iven/ ,e  {1 ..... aN} and a pattern {~, the set 
of configurations a such that d({ ", a) = [aN] can be obtained by choosing 
first the subset J c  {1,..., N}, where a and ~ disagree, and then ~ r j r  
Vj �9 J. In particular, 

IS(~ ~', 6)t = [aN] ( q -  ])[6N] (2.1) 

From (2.I) we get 

P(~# c { 1,..., aN}, 3a �9 S(~ z, ~5); H(a)~< H(~. u) + eN 2) 

~< aN [aN] ( q -  [)[aN] P(H({~)-H({~)<'gN2)  (2.2) 

where r is any pattern in S(r ~, 6); one can choose J =  {1, 2,..., [6N]} and 
/t is any index �9 { 1 ..... aN}. 

In order to estimate the probability in the right-hand side of (2.2), we 
introduce some notations. 

Let 

Vi = 2 - 
q 

Define the variables 

(r162 if) 
z , "  - 2 6 (~ f ,  ,~ ," i , J -  (NV1)m 

i e J  

(2.3) 

822/66/'5-6-30 
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Z ,  _ ~, 6(~ ' ,  (r ~ / ) - 2 / q  (2.4) 
2, J - -  ( N V 2 ) l / 2  

i~J 

Z ,  _ ~ 2 ( 6 ( ~ ' , ~ ) - 1 / q )  
2,jc -- ~J~ (NV2)U 2 (2.5) 

Using the identity x 2 - y 2  = ( x  - y ) ( x  -t- y ) ,  it is not difficult to check that 

~N 

m ( ~ J )  -- O(~la) --~- - - ( V 1 V 2 ) I / 2 N  2 Z1,J(Z2,jJi-~" ~' Z~'j~) + N 2 7 ,  ( 2 . 6 )  

ft,= 1 
tt' ~- it 

In particular, the event which appears in the right-hand side of (2.2) 
is 

l ~N } 
Zl ,J(Z2,  J -~- Z~'je) (2.7) 

/~'=1 
# ' e f t  

where u = (~ - e)/e( V1 V2) m. 
Now given g and a fixed realization of ~ ,  it is easy to check that the 

family 
#' ,u' #' 

{ Z  l,J (Z2 , J  --F g 2 , j e )  ) c~N y # ' = l  
#' :r tt 

is a family of i.i.d, random variables. 

R e m a r k .  We emphasize that, given ~ ,  the two random variables 
( ~,j, Z~'j), are not independent, but Z ~'~,J and Z ~'2,J are independent of 
Z~Ij~. This phenomenon occurs only if q > 2; if q = 2, it can be verified that 
Z~I J = 0 V#' e { 1 ..... ~N}. This is the main difference between the two cases. 

It is easy to show that ~_(Z~IjZ~I.t ) = 0 [in fact, it follows from expres- 
sion (2.11) below]; then BN is the event of a large deviation from the mean; 
it is natural to use the exponential Markov inequality to get 

P ( B N )  <~ [ inf e- '"E(e `z'.~z2,J+ z2,j~))]~u 
t>~0 

(2.8) 

where ( Z 1 , J ; Z 2 ,  j '~Z2, je ) have the same distribution as any given 
Z" '  �9 Z u' " Z~ijc ) for some #' ~ #. 1,J~ 2,J~ 

Calling F A for A = J or A = j c  the expectation with respect to the 
random variables (r162 for i s  A, and taking into account the previous 
remark, we get 

~_(e,Z~,j(z2,,+ z2.jc)) = Ej(e,Zl,~&,jEjc(e,Z~,,zi,sc)) (2.9) 
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Now looking at (2.5), it is easy to check that 

Ej~(e'Zz'sz2'Jc)= ~ 1 -  
, ,=o2 n /2q/  

2 ,  , 2 1 o ,  x exp Z1,j (NV2)m 

Now in order to perform the expectation with respect to E s we need the 
explicit form of the joint distribution of (Z1.j, Z2,j). Assume for the 
moment that for any function f :  N 2 ~ R, 

~:s(f(Z2, J, Z, , j ))  

x=o I= K - q /  
~[ K -  2 [J[/q l ) 

x j ~  (~2-~i- ~ , (NI71)~/2_ (2.11) 

Therefore we get 

~(etZi,Az2,j+ z2,s~) 

,J, ~K I~ ,j[ K x 
= 

-" tl f ( K -  2J/q)+__2(n 7 ]jCl/q!) 
x ( 1 -  +)'Jq (+ ) "  exp (NV,),/2 \ (V2N)~/2 ] 

Let us now check (2.11). 

(2.12) 

For each Ke0,..., ]J], we  can choose A, ]AI = ] J ] - - K ,  such that, for 
i~A, 

(~j),) + 6(3; ,  ~ )  = o 

and for i E J\A 

6(~ ' ,  (3"j),) + 6(r ~f) = 1 

This choice can be done in (l~) different ways and the probability of any 
choice is (1 - 2/q)IJI- K (2/q)K. 

NOW for fixed K and A, we choose on J\A a subset B of cardinal 
(K+ l)/2, where for a n y j ~ B ,  

a(r ( r  6(r r  1 



1650 Ferrari e t  al. 

and for a n y j e  (J\A)\B, 

6(~", (~"~)i)- 6 ( ~ ,  ~,")= - 1  

We have ((~:~z)12) choices of such subset B and each choice has probability 
(1/2) K. Note that 

6(~,.. ( , ) , )  - 6(~,., L") = / 
i E J\A 

In order to estimate (2.12), we will use the two following lemmas. 

Lemma 2.1. For any real number ). and any integer K~>O 

~ (K+l)/2 2 eXt<~eX~Kla 
l= K 

Proof. This follows from 
2 2 

(cosh 2) K ~< exp ~- K 

(2.13) 

I . e m m a  2.2. Let S, = ZT-~ Xi, where X~ = 0 with probability p and 
Xg = 1 with probability 1 - p  = r. Then for any real number 2 

~_( e~S,- E(s,))) <~ e(~212), (2.14) 

ProoL Using the Jensen inequality, we get, for any i e {1,..., n}, 

~_(eX(X,- ~(x,))) <~ ~_(eX(X,- x;)) (2.1 5 ) 

when X; have the same distribution as X i and is independent of Xi. 
Remark that X i - X ; =  +1 with probability rp and X i - X ; = O  with 
probability p2 + r 2. Therefore 

E(e;-~x~ x~))=p2 +r2 + 2pr(eX2 e ;') 2 2 -- ~< cosh 2 ~< exp-~- �9 

Now using Lemma 2.1, we get, for any K>~ 0, 

+K ( K ) ( 1 )  x tl ( (K-2lJ l /q)+2(n- lJCl /q) )  
Z ( g + l ) / 2  2 e x P ( N V x ) I / 2  ' ( V 2 N )  1/2 

I = - K  

~< exp -~ ~--~ (V2N)I/2 �9 

~< ~ Iexp {t " ~  Z'~] ( K - 2  I~/q)+2(n-IJCl/q) 
\ ~  ) I  (V2N) 'i2 J (2.16) 
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where Z is a normalized Gaussian random 
K/N~< a. 

Now inserting (2.16) in (2.12) 
(1 - 2 / q )  and P2 = (1 - 1/q), we get 

( t2 3Z2 (IJl+41JCt)) 
E(e'Zl'~(z2'J + z~'sc)) ~< E exp 2- Vt V- -~  N 

=(1_t23(3+4(1.~1.1Vs -1/2 

Calling v = a(6 + 4(1 -- 6))/V1 V2, we have 

1 
inf e ,~ = etch, ~) 
,~>0 (1  - -  t 2V)  1/2 

where 
1 2 1/2 t/2 

F(u,v)=-~ 1 - -  - 1 + log  u~ 1+ - 1  

Therefore, using (2.19), (2.18), (2.8), and (2.2), if we prove that 

variable and we have used 

and using Lemma2.2 with P l =  

(2.17) 

(2.18) 

(2.19) 

-61og6-(1-6)log(1-cS)+61og(q-1)--c~F(u,v)<O (2.20) 

then using 
theorem. 

Recall 

the Borel-Cantelli 1emma, we can finish the proof of the 

6 [ ( l - h ) +  (1-2 /q)] -e  
~[(26/q) V2] 1/2 

and lima_0 V2=4(1/q)(1- 1/q). Choose for convenience c = 6 ( 1 - 2 / q ) ;  
then 

o~ 

for some constant C~(q). 
Now, it can be checked that l i m ~  IF(u, v)/u] = 1/,,/7; therefore 

~F(u, v) ~ ~ C2(q) for some constant C2(q). 
Now 

C2(q) xf~ 
- 6 l o g  6 - -  ( 1 - 6 ) l o g (  1 - 6 )  + 6 l o g ( q  - 1 ) 

C2(q) 
~ + o 0  

_x/-~ log 6 + x ~  log(q_ 1 ) a~o 

This proves (2.20), choosing first c~ small enough and then 6. 
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Remark .  M a k i n g  an explici t  computa t ion ,  if we are interested in q 
very large, it can be checked tha t  as q ~  00, C x ( q ) ~  [(q6)1/2/~] C1, 

C2(q ) ~ (q/(~)l/2 (C 2 and  therefore 

(6/q) 1/2 

- 6 1 o g 6 - ( 1 - 6 ) l o g ( 1 - f ) + f l o g ( q -  1) 

- x ~  log 6 + x ~  l o g ( q -  1) 

by choos ing  an a p p r o p r i a t e  6 depend ing  on q. 
At  this po in t  we r e m a r k  tha t  in the l imit  q ~ oo the es t imate  (2.14) is 

too  p o o r  to take  seriously when one considers  wha t  happens  when q ~ ~ .  
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